E. Corao* and S. Baggio

Received July 19, 1969

The crystal structure of tristhiourea-cadmium sulphate, $Cd(SC(NH_2)_2)_3SO_4$, has been determined by three dimensional X-ray analysis. Crystals are triclinic ($P\overline{1}$) with cell dimensions a = 9.06(2), b = 9.80(2), c =8.78(2) Å, $\alpha = 110.6(5)$, $\beta = 95.1(5)$, and $\gamma =$ $92.0(5)^{\circ}$. The measured and calculated values for the density (for Z=2) are 2.02 and 2.00 g/cm³, respectively. A total of 1568 non-zero reflexions has been obtained by photographic methods. The structure was solved by Patterson methods and refined by the full-matrix least square method to a conventional R factor of 0.097. The crystal structure shows that the molecule is a dimer, and that the coordination around the metal atom is intermediate between square pyramidal and trigonal bipyramidal, although somewhat closer to the former. One sulphur atom from a thiourea molecule coordinates to two adjacent cadmium atoms at distances 2.627(7) and 2.870(7). The other three bond lengths in the coordination polyhedra are: Cd - S(2) = 2.538(6), Cd - S(3) = 2.627(6)(both S from thiourea molecules) and Cd-O(1) =2.339(15) (the O belonging to the sulphate group).

Introduction

Nardelli and Chierici¹ obtained three complexes of cadmium sulphate with thiourea (hereafter tu); Cdtu- $SO_4 \cdot 2H_2O$, Cd(tu)₄SO₄ and Cd(tu)₃SO₄. The first compound was studied by X-ray diffraction² and the crystal structure showed that it was polymeric with octahedral coordination around the cadmium atom.

In this work, the analysis of the crystal structure of $Cd(tu)_3SO_4$ is undertaken, in order to investigate the coordination around the metal atom and the binding of its ligands, since it seems that these cannot be determined from the chemical composition alone.

Experimental Section

The crystals of $Cd(tu)_3SO_4$ were kindly supplied by Dr. R. Levitus.

Crystals are triclinic, with cell dimensions a = 9.06(2) Å, b = 9.80(2) Å, c = 8.78(2) Å, $\alpha = 110.6(5)^\circ$, $\beta = 95.1(5)^\circ$, $\gamma = 92.0(5)^\circ$. These

values were obtained from calibrated precession photographs, taken with Mo k α radiation ($\lambda = 0.7107$ Å) at 20°C, and standard deviations were estimated from repeated film measurements; they are slightly different from those reported previously by Nardelli *et. al.*¹ The space group is P1, as determined by crystal analysis. They are two molecules per cell and the observed and calculated density are 2.02 and 2.00 g/cm³, respectively. The volume of the unit cell is 724 Å.³

The intensities were collected with a single crystal of roughly spherical shape and mean radius of 0.01 cm, which was mounted with the c axis parallel to the spindle axis.

The layers hk0 to hk8 were recorded in a Weissenberg camera using the equi-inclination technique; the h0l and 0kl layers with a precession camera (all with Mo K α radiation).

The intensities were estimated visually on the Weissenberg photographs by comparison with a calibrated scale; for the integrated precession photographs a microdensitometer was used. A total of 1568 non-zero reflexions was obtained within a 2,000:1 ratio of maximum to minimum intensity.

Lorentz and polarization corrections were taken into account and the Phillips spot-shape factor³ was apllied to the extended half of the upper level Weissenberg photographs.

The data from the different layers were put on the same scale using the hOl and Okl levels.

No absorption correction was applied ($\mu_{MoK\alpha} = 21.4 \text{ cm}^{-1}$) because if the crystal is assumed to absorb as a sphere of radius 0.01 cm, the largest variation in intensity for a given layer is less than 2 per cent.

Structure Determination and Refinement. The cadmium and sulphur atoms were located in a three dimensional Patterson synthesis. The positions of the other atoms were obtained from successive electron density maps.

The initial reliability index $R = (\Sigma(|F_o|-|F_c|)/\Sigma|F_o|$ with all atoms was 0.29. A full matrix least square refinement was begun at this point, refining the positional parameters, isotropic temperature factor and a scale factor, one for each layer. After four cycles, convergence was achieved with reliability indexes R = 0.122 and $R' = (\Sigma\omega(F_o^2-F_c^2))/\Sigma\omega F_o^2 = 0.142$. The weighting scheme used was $\sigma = 1$ when

(3) D. C. Phillips, Acta Cryst., 7,746 (1954).

Corao, Baggio | The Crystal Structure of a Five-Coordinated Cd^{II} Complex

^(*) Present address: Centro de Ciencias U.L.A. Mérida, Venezuela.
(1) M. Nardelli and I. Chierici, *Ric. Sci.*, 28, 1016, (1958).
(2) L. Cavalca, P. Domiano, G. Fava and P. Boldrini, *Acta Cryst.*22, 878 (1967).

 $|F_o| < 50.0$ and $\sigma = (1+0.1(|F_o|-50.0))^{\frac{1}{2}}$ when $|F_o| > 50.0$, which gave a fairly constant value of $\omega \Delta^2$ in ranges of $|F_o|$ and sin ϑ/λ .

The refinement was continued allowing for anisotropic temperature factors of the Cd and S atoms and reducing the number of variable scale factors to one overall scale factor. This new series of refinement cycles converged after three cycles with R =0.097 and R' = 0.123. With the coordinates obtained in the last cycle of refinement a difference Fourier synthesis was computed. The resulting electron density map showed no peaks exceeding ± 0.8 e. Å⁻³.

The atomic scattering factors for neutral atoms used during the refinement were taken from a paper of Cromer and Waber.⁴

No attempt was made to locate hydrogen atoms. Theoretical positions for H were calculated assuming an sp^2 configuration for the nitrogen atoms and distances N-H of 1.03 Å. These positions are given in Table I.

Table I. Theoretical Positions for Hydrogen Atoms

Atom	x	У	z
H(1)	0.580	0.340	0.089
H(2)	0.741	0.384	0.009
H(3)	0.141	0.060	0.566
H(4)	0.179	0.224	0.785
H(5)	0.573	0.132	0.626
H(6)	0.568	0.333	0.738
H(7)	0.551	0.125	0.127
H(8)	0.700	0.012	0.074
H(9)	0.076	0.452	0.688
H(10)	0.061	0.421	0.834
H(11)	0.426	0.468	0.638
H(12)	0.300	0.385	0.431

Table II. Coordinates and Isotropic Temperature Factors. Standard deviations given in parentheses are in units of the last decimal place.

Atom	x	У	Z	В
Cd	0.1125(2)	0.1331(2)	0.2211(2)	*
S(1)	0.0991(6)	0.1450(6)	0.0367(7)	*
S(2)	-0.0798(7)	0.2003(7)	0.4235(8)	*
S(3)	0.3728(7)	0.0977(6)	0.3546(7)	*
S(4)	0.2732(6)	0.3657(5)	0.1057(7)	*
O(1)	0.1887(16)	0.3711(15)	0.2456(18)	2.8(2)
O(2)	0.4260(20)	0.4310(19)	0.1671(22)	4.3(3)
O(3)	0.1961(19)	0.4512(18)	0.0162(21)	4.0(3)
O(4)	0.2737(18)	0.2085(18)	-0.0056(21)	3.9(3)
N(1)	0.3205(23)	-0.3123(22)	0.0465(25)	4.0(4)
N(2)	0.1220(23)	0.1795(22)	0.6631(26)	3.6(4)
N(3)	0.5316(22)	0.2425(24)	0.6384(29)	4.5(4)
N(4)	0.3464(22)	-0.0956(20)	-0.0837(26)	3.5(4)
N(5)	0.0018(24)	0.3880(22)	0.7208(26)	4.0(4)
N(6)	0.3843(23)	0.3805(23)	0.5340(27)	4.1(4)
C(1)	0.2695(22)	-0.1826(21)	0.0354(26)	2.3(3)
C(2)	0.0256(23)	0.2592(22)	0.6096(26)	2.6(4)
C(3)	0.4351(29)	0.2513(26)	0.5137(31)	3.7(4)

* were refined anisotropically

Results

Table II gives the positional parameters and the isotropic temperature factor; Table III gives the

(4) D. T. Cromer and J. T. Waber, Acta Cryst., 18, 104 (1965).

anisotropic thermal parameters for the Cd and S atoms. The observed and calculated structure factors using the numbers given in Tables II and III are given in Table IV. Table V gives the least squares planes passing through the thiourea molecules and the deviations of the atoms from them. Table VI gives the most important bond distances and angles.

Table III. Anisotropic Temperature Factors. Thermal parameters $(\times 10^4)$. Standard deviations given in parentheses are in units of the last decimal place.

Atom	β	β ₂₂	β33	β ₁₂	β ₁₃	β23
Cd	100(2)	84(2)	103(3)	6(1)	31(2)	25(2)
S(1)	63(6)	76(6)	113(10)	3(5)	17(6)	31(6)
S(2)	84(7)	127(8)	122(11)	23(6)	8(6)	13(7)
S(3)	110(8)	78(6)	109(10)	13(6)	6(7)	15(6)
S(4)	77(6)	72(6)	96(10)	4(5)	13(6)	32(6)

The form of the anisotropic temperature expression is exp. (S Σ $\beta_{i_j}h_ih_j)$

Discussion

Figure 1 gives a projection of the structure on the (100) plane of a set of orthogonal cordinates obtained by the transformation given in the footnote of Table V. Figure 2 shows a schematic view of the molecule.

Figure 1. Orthogonal projection of the structure on the plane (100).

Figure 2. Schematic view of the molecule.

3568909876301234568969665432101234598853101234570987653255555555555555555555555555555555555
3 229 244 3 220 -396 3 120 -396 3 120 -396 3 120 -185 3 120 -185 3 1252 -185 3 1252 -2131 3 130 3030 3 343 5030 3 343 5030 3 343 5030 3 406 -547 3 547 -5482 3 547 -5482 3 340 -393 3 1262 -244 3 347 -343 3 1262 -343 3 1262 -344 3 1262 -343 3 1262 -343 3 1262 -343 3 1262 -343 3 1262 -343 <tr< td=""></tr<>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} -7 \\ -4 \\ -4 \\ -4 \\ -3 \\ -4 \\ -4 \\ -3 \\ -4 \\ -4$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
174 -170 • 204 -203 • 170 201 • 170 201 • 170 201 • 170 201 • 170 201 • 171 140 • 147 -124 • 147 -127 • 147 -140 • 147 -140 • 147 -140 • 147 -266 7 215 -211 7 213 203 7 213 203 7 213 203 7 140 214 7 213 224 7 140 214 7 140 224 7 140 224 7 140 224 7 140 224 7 140
9
117 128 7 118 -112 7 118 -112 7 118 -112 7 118 -112 7 119 -123 7 129 -123 7 129 -123 7 129 -123 7 120 -124 7 120 -124 7 120 -124 7 120 -124 7 120 -124 7 120 -124 7 120 -124 7 120 -124 7 120 -124 7 120 -124 120 202 -202 120 203 202 120 204 -124 121 -124 121 -124 122 -124 124 -124 124

Table IV. (Continued)

Table V. Equations of least-squares planes and deviations (Å) from these planes. (In this calculations an unitary weighting scheme was used). Coefficients are direction cosines relative to orthogonal axes. X, Y, X are also orthogonal coordinates, in Å^a.

Equation of plane	Atom	Deviation
(-0.358)X + (-0.096)Y + (-0.929)Z + 2.78 = 0	S(1)	-0.0044(6)
	C(1)	0.01(2)
	N(1)	0.00(2)
	N(4)	0.00(2)
(0.743)X + (0.570)Y + (-0.350)Z - 1.669 = 0	S(2)	-0.012(6)
	C(2)	0.04(3)
	N(2)	-0.01(2)
	N(5)	-0.01(2)
(0.793)X + (0.358)Y + (-0.484)Z - 0.986 = 0	S(3)	-0.011(6)
	C(3)	0.04(3)
	N(3)	-0.01(2)
	N(6)	-0.01(2)

^a Orthogonal coordinates in angstroms are obtained by transforming the fractional coordinates with the matrix (a, b. $\cos \gamma$, c. $\cos \beta//0$, b. $\sin \gamma$, c. $(\cos \alpha -\cos \beta \cos \gamma)/\sin \gamma//0.0$ V/(a.b.sin γ)). X is along the axis, Y in the (a, b) plane and Z along the c-axis.

Table VI. Distances (Å) and Angles (°) in Cd(tu)₃SO₄. Standard deviations, given in parentheses, are in units of the last decimal place. For numbering of atoms see Figure 1.

Coordination Pol	yhedra				
Cd—S(1) Cd—S(1') Cd—S(2) Cd—S(3) Cd—O(1)	2.627(7) 2.870(7) 2.538(6) 2.627(6) 2.339(15)	S(1)-Cd-S(1') S(1)-Cd-S(2) S(1)-Cd-S(3) S(1)-Cd-O(1) S(1')-Cd-S(2)	82.4(2) 114.6(2) 87.8(2) 145.0(4) 91.2(2)	S(1')CdS(3) S(1')CdO(1) S(2)CdS(3) S(2)CdO(1) S(3)CdO(1)	156.0(2) 84.5(4) 112.7(2) 97.1(14) 91.6(4)
Sulphate Group:					
S(4)O(1) S(4)O(2) S(4)O(3) S(4)O(4) SO (mean value	1.491(15) 1.476(19) 1.487(19) 1.507(19) e) 1.490	O(1)-S(4)-O(2) O(1)-S(4)-O(3) O(1)-S(4)-O(4)	110.0(1.0) 108.0(1.0) 108.4(1.0)	O(2)-S(4)-O(3) O(2)-S(4)-O(4) O(3)-S(4)-O(4)	109.4(1.0) 111.0(1.0) 109.0(1.0)
Thiourea Molecul	les:				
	S(1)-C(1) C(1)-N(1) C(1)-N(4) S(2)-C(2) C(2)-N(2) C(2)-N(5) S(3)-C(3) C(3)-N(3) C(3)-N(6) SC (mean value)	1.724(21) 1.342(31) 1.287(30) 1.713(22) 1.351(31) 1.335(31) 1.690(27) 1.368(34) 1.321(36) 1.709	$\begin{array}{l} S(1)-C(1)-N(1)\\ S(1)-C(1)-N(4)\\ N(1)-C(1)-N(4)\\ S(2)-C(2)-N(2)\\ S(2)-C(2)-N(5)\\ N(2)-C(2)-N(5)\\ S(3)-C(3)-N(3)\\ S(3)-C(3)-N(6)\\ N(3)-C(3)-N(6)\\ C-N \ (mean \ value) \end{array}$	117.3(1.6) 123.5(1.7) 119.1(2.0) 125.5(1.7) 118.8(1.7) 115.2(2.0) 119.7(2.0) 123.3(2.0) 116.6(2.3) 1.336	

In the following discussion atoms are labelled as follow:

Superscript	Coordinates
none	x, y, z
"	1-x, 1-y, 1-z
	$1 - x - v \cdot 1 - z$
iv	$\mathbf{x} \cdot \mathbf{y}, 1 + \mathbf{z}$
v	x, 1—y, z
vi	1 + x, -y, -z
vii	-x, 1-y, 1-z
viii	x, y, $1 + z$

It is seen that in $Cd(tu)_3SO_4$, the cadmium atom is five-coordinated. Coordination can best be described in terms of a distorted square pyramid. Four sulphur atoms from thiourea molecules and one oxygen atom from the sulphate group surround the metal atom. The atoms S(1), S(3), S(1') and O(1) determine the base of the distorted pyramid, while S(2)is at the apex. The least squares plane passing through S(1), S(3), S(1') and O(1) is (0.664)X + (0.208)Y +(-0.718)Z + 0.001 = 0 where X, Y, Z are orthogonal coordinates (see footnote of Table V). The distances of the atoms to this plane are: S(1) = -0.074(6); S(3) = 0.076(6); S(1') = 0.077(6) and O(1) =-0.078(6). For Cd and S(2) the distances are 0.624(2)and 3.099(6) Å, respectively. As can be seen in Figure 2, atoms S(1') and S(3) that are 0.077 and 0.076 Å above the mean plane, respectively, make the angle S(1')-Cd-S(3) greater than S(1)-Cd-O(1). The angles S(2)-Cd-O(1) and S(2)-Cd-S(1') are smaller than S(2)-Cd-S(1) and S(2)-Cd-S(3). This indicates that the S(2)-Cd bond is tilted with respect to the basal plane in the direction of the S(1')-O(1)edge of the base. Two pyramids related by an inversion center are joined through the S(1')-S(1) edge, resulting in a dimer molecule. The angles around S(1): Cd-S(1)-Cd' = 97.6(7), Cd-S(1)-C(1) =107.8(7) and Cd'-S(1)-C(1) = $109.6(7)^{\circ}$, indicate a distorted tetrahedral environment. The S(1) atom coordinates to two adjacent Cd atoms with somewhat different distances: 2.627(7) and 2.870(7) Å. The other distances between Cd and S in the coordination polyhedra are: Cd-S(2) = 2.538(6) and Cd-S(3) =2.627(6) Å.

The ligand thiourea acts as a bridge in other Cd^{II} complexes with distances Cd-S of 2.64 and 2.65 Å in monothiourea cadmium sulphate,² and 2.74 and 2.71 in bisthiourea cadmium formate.5 Some of these values are significatly different from those obtained by us, and in all cases they are intermediate between the sum of Pauling's covalent and ionic radii, 2.52 and 2.87 Å, respectively.

The Cd–O(1) distance, 2.339(15) Å, is greater than the sum of Pauling's covalent radii, 2.22 Å, and it differs by less than three e.s.d. from the mean value obtained in Cd(tu)SO₄. 2H₂O.²

It is convenient at this point to emphasize that Cd(tu)₃SO₄ is the first reported five-coordinated Cd^{II} complex; it is also the first reported structure where thiourea acts as a bridge in a dimer molecule. Distorted square pyramidal coordination has been also found in some Zn^{II} complexes, *i.e.* Zn(acac)₂. H₂O,⁶ and the angles obtained in the coordination polyhedra are rather similar to those found by us.

Distances and angles in the sulphate group are in good agreement with those observed in other sulphate complexes and are practically equal to those found in the ionic sulphate.7 The orientation of the sulphate group is mainly determined by the intra and intermolecular hydrogen bonds involving the oxygen atoms and the NH2 groups. The angle Cd-O(1)-S(4) is 109.3(8)°. One of the oxygen atoms, O(4), is located at 2.84 Å from Cd atom. This is a relatively short distance for non bonded atoms; a tentative explanation for this fact is that O(4) participates strongly in intra and intermolecular hydrogen bonding with H(8) and $H(4^{IV})$.

The three independent thiourea molecules are planar, and their least square planes are given in Table V. The dimensions in the thiourea molecules

(5) M. Nardelli, G. Fava and P. Boldrini, Acta Cryst., 18, 618 (1965). (6) H. Montgomery and E. C. Lingafelter, Acta Cryst., 16, 748 (1963).
(7) D. Andreetti, L. Cavalca and A. Musatti, Acta Cryst., B24, 683 (1968).

are not significantly different from those reported previously for the free ligand.⁸ The S-C bond lengths are between 1.690 and 1.724 Å (mean value 1.709-(14) Å), compared with a value of 1.720(9) Å in the free ligand; while the mean value of the C-N bond length, 1.336(15) Å, differs by less than one e.s.d. from 1.340(6) Å, which is the value found in the free thiourea.

The thiourea molecules are tilted with respect to the Cd-S bond. The values of the angles are: Cd-S(1)-C(1) = 107.8(7), Cd-S(1')-C(1) = 109.6(7),Cd-S(2)-C(2) = 103.2(8) and Cd-S(3)-C(3) =100.0(9). The values are consistent with those obtained in other thiourea complexes, i.e. 101.9, 107.7 and 107.0° in tristhiourea zinc sulphate;⁷ 100.6 and 101.2° in bisthiourea zinc acetate9 and 113.0° in bisthiourea cadmium chloride.¹⁰

Apparently the molecules in the crystal are held together by hydrogen bonds involving oxygen atoms from the SO₄ group, the NH₂ group of the thiourea molecules and probably S atoms of the same ligand. The distances that can be considered as hydrogen bonds are listed below, as well as the N-H-X angle, where X is O or S. In this calculation the theoretical positions for H atoms, as are given in Table I, were used. The distances and angles are:

$N(1) - O(2^{vi})$	2.74(2) Å	$N(1) - H(1) - O(2^{vi})$	165°
$N(1) - O(3^{v})$	2.79(3)	$N(1) - H(2) - O(3^{\circ})$	161
$N(2) - O(4^{iv})$	3.02(3)	$N(2) - H(4) - O(4^{iv})$	153
N(3)-S(3")	3.49(3)	N(3)-H(5)-S(3")	168
N(3)O(2'')	3.04(3)	N(3)-H(6)-O(2")	143
N(4) - O(4)	2.93(3)	N(4) - H(8) - O(4)	161
$N(5) - O(1^{vii})$	2.92(3)	$N(5) - H(9) - O(1^{vii})$	148
$N(5) - O(3^{viii})$	2.86(3)	$N(5) - H(10) - O(3^{viii})$	167
N(6) - O(1)	2.93(3)	N(6) - H(12) - O(1)	170
N(6)O(2")	2.97(3)	N(6)-H(11)-O(2")	154

Acknowledgments. We are grateful to the Director and staff of the Departmento de Computación of U.C.V. for generous allocation of computing time. We are also indebted to Drs. F. R. Ahmed, B. Foxman, M. E. Pippy, C. T. Prewit, D. P. Shoemaker and A. Zaldkin, for making available to us the Fortran IV programmes we used in the calculations. One of us (E.C.) thanks to the Universidad de Los Andes for a fellowship.

(8) M. R. Truter, Acta Cryst., 22, 556 (1967).
(9) L. Cavalca, G. Fava, D. Andretti and P. Domiano, Acta Cryst., 22, 90 (1967).
(10) M. Nardelli, L. Cavalca and A. Braibanti, Gazz. Chim. Ital., 87, 137 (1957).